Conventional Computers Can Learn To Solve Tricky Quantum Problems in Physics and Chemistry – SciTechDaily

Quantum computers have generated a lot of buzz and for good reason. The futuristic computers are designed to mimic what happens in nature at microscopic scales. This means they have the power to better understand the quantum realm and speed up the discovery of new materials, including pharmaceuticals, environmentally friendly chemicals, and more. However, experts say it is still a decade away — or more — before practical quantum computers are available. What are researchers to do in the meantime?

A new study describes how machine learning tools, run on classical computers, can be used to make predictions about quantum systems and therefore help scientists solve some of the trickiest physics and chemistry problems. While this notion has been proposed before, the new report is the first to mathematically prove that the method works in problems that no traditional algorithms could solve. Led by Caltech, the study was published on September 23 in the journal Science.

Hsin-Yuan (Robert) Huang. Credit: Caltech

“Quantum computers are ideal for many types of physics and materials science problems,” says lead author Hsin-Yuan (Robert) Huang. He is a graduate student working with John Preskill, the Richard P. Feynman Professor of Theoretical Physics and the Allen V. C. Davis and Lenabelle Davis Leadership Chair of the Institute for Quantum Science and Technology (IQIM). “But we aren’t quite there yet and have been surprised to learn that classical machine learning methods can be used in the meantime. Ultimately, this paper is about showing what humans can learn about the physical world.”

John P. Preskill, Richard P. Feynman Professor of Theoretical Physics at Caltech. Credit: Lance Hayashida

At microscopic levels, the physical world becomes an extremely complex place ruled by the laws of quantum physics. In this realm, particles can exist in a superposition of states, or in two states at once. And a superposition of states can lead to entanglement, a phenomenon in which particles are linked, or correlated, without even being in contact with each other. These strange states and connections, which are widespread within natural and human-made materials, are very difficult to describe mathematically.

“Predicting the low-energy state of a material is very hard,” says Huang. “There are huge numbers of atoms, and they are superimposed and entangled. You can’t write down an equation to describe it all.”

The new study represents the first mathematical demonstration that classical machine learning can be used to bridge the gap between us and the quantum world. Machine learning, considered a field of artificial intelligence, is a type of computer application that mimics the human brain to learn from data.

“We are classical beings living in a quantum world,” says Preskill. “Our brains and our computers are classical, and this limits our ability to interact with and understand the quantum reality.”

Although previous studies have shown that machine learning models have the ability to solve some quantum problems, these methods typically operate in ways that make it difficult for scientists to learn how the machines arrived at their solutions.

“Normally, when it comes to machine learning, you don’t know how the machine solved the problem. It’s a black box,” says Huang. “But now we’ve essentially figured out what’s happening in the box through our mathematical analysis and …….

Source: https://scitechdaily.com/conventional-computers-can-learn-to-solve-tricky-quantum-problems-in-physics-and-chemistry/

Leave a Reply

Your email address will not be published. Required fields are marked *